Geometric Asymptotic Approximation of Value Functions∗
نویسنده
چکیده
This paper characterizes the behavior of value functions in dynamic stochastic discounted programming models near fixed points of the state space. When the second derivative of the flow payoff function is bounded, the value function is proportional to a linear function plus xψδ . A specific formula for ψδ is provided, which implies ψδ continuously falls in the rate of patience. If the state variable is a martingale, the second derivative of the value function is unbounded. If the state variable is instead a strict local submartingale, then the same holds for the first derivative of the value function. Thus, the proposed approximation is more accurate than Taylor series approximation. The approximation result is used to characterize locally optimal policies in several fundamental economic problems. ∗Thanks to Lones Smith for substantial advice and assistance throughout this project. Any errors are mine. †Email: [email protected]
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملA remark on the means of the number of divisors
We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$, where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$, with $d(n)$ denoting the number of positive divisors of $n$. Also, we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.
متن کاملBandelet Image Approximation and Compression
Finding efficient geometric representations of images is a central issue to improve image compression and noise removal algorithms. We introduce bandelet orthogonal bases and frames that are adapted to the geometric regularity of an image. Images are approximated by finding a best bandelet basis or frame that produces a sparse representation. For functions that are uniformly regular outside a s...
متن کاملAsymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data
The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...
متن کاملExperimental and Mathematical Investigation of Time-Dependence of Contaminant Dispersivity in Soil
Laboratory and field experiments have shown that dispersivity is one of the key parameters in contaminant transport in porous media and varies with elapsed time. This time-dependence can be shown using a time-variable dispersivity function. The advantage of this function as opposed to constant dispersivity is that it has at least two coefficients that increase the accuracy of the dispersivity p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009